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Forward

We have developed a physics-based control framework that provides a practical yet princi-

pled approach for designing collective systems. This framework is called ”artificial physics”

(AP), because agents perform actions based on virtual forces exerted on them by other

agents and the environment. These forces are designed to ensure that the global behavior

of a multi-agent system arises from local interactions of the agents, as well as from task-

specific goals and constraints. We extend AP by using genetic algorithms (GAs) to search

a space of interaction potentials so that the desired behavior emerges from the interactions

between the agents. This extended framework is applied to the task of surveillance, where

a team of unmanned air vehicles (UAVs) must provide maximum sensory coverage of ter-

rain, in order to maximize the probability of detection of targets of interest. This report

summarizes preliminary results that indicate that robust behavior is achieved, despite loss

of assets or sensor degradation. This report also provides some initial theoretical analyses

of simple behavior-based asset controllers on the surveillance task.
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Chapter 1

Introduction

1.1 The Task

The task to be addressed is multi-agent surveillance. Assume there are α assets flying at a

constant altitude over terrain that contains areas of foliage and non-foliage. The assets have

sensors to detect targets of interest (such as tanks), and they can determine whether they

are over areas of non-foliage or foliage. The target detectors cannot penetrate the foliage

– thus, regions of foliage are of lower interest than those without foliage. Each asset has a

target detector with a field of view of πrt
2, and a terrain detector with a field of view of

πrf
2, where rf > rt. The total area of the region is much greater than απrt

2. The goal is

to locate T targets as reliably as possible, within some time period t. Targets may move

and may hide in foliage.
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Chapter 2

The Environment

2.1 Forest Generation

For this project we assumed that foliage is synonymous with a forest of trees. When

the targets are under the trees they are undetectable, but otherwise they are seen by the

UAVs. In order to simulate this problem, we created an algorithm that generates random

forests, i.e. refuge for the targets. The algorithm used to generate these forests includes

a stochastic element, therefore with different random number seeds, we generate different

forests with roughly the same amount of coverage. But, we also needed the capability to

rerun experiments generating the same forest as before. Given a certain random seed the

algorithm is deterministic and repeatable. Different random seeds provide the stochastic

element.

Before we describe the algorithm we need a few definitions. Let the world be a square

such that the sides are of length L. This is a discrete world, therefore we can represent a

forest as a two-dimensional binary table. In the world, the position (i,j) can either be a

collection of trees (referred to from here on as a tree) or can remain barren. We designed

the algorithm to mimic a real forest, such that there are larges clusters of trees, yet there

can be holes in the middle. These holes allow assets to view targets.

The algorithm begins by placing an initial number of trees in the environment. The

algorithm uses the natural process of seeding in order to generate the next phase of the

forest. The process continues until a desired state has been reached. The controlling

parameters of the algorithm are:

• nf - The initial number of trees in the forest.

13
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• Rs - The distance that seeds can travel.

• Ss - The amount of seeds spread during seeding.

• ds - The decay rate of the seeds.

• Fc - The desired forest coverage.

The algorithm begins by initializing nf trees. The placement of these trees is uniformly

distributed about the world. Rather than just initializing one square for a clump of trees,

we initialize a cross section, to aid in the development of the forest, see Fig 2.1(a). Once the

initial trees have been placed, the next generation begins. For a given generation the current

trees in the population are allowed to seed the areas surrounding them with a distance of

Rs. The amount of seed laid at each position within this circle is defined as Ss. The seeding

process can be seen in Fig 2.1(b). Once everything has been seeded, we begin selecting

positions (i,j) that are seeded and determine if they become trees, by selecting a uniformly

distributed random number. If the value selected is less than that of the seeds in the area,

then the seeds have taken hold, and grow to become trees. Using this procedure not all

seeds will become trees therefore, we apply a decay to those seeds that have not become

trees. Notice that as more trees surround an area, the greater the probability of growing a

tree, since it has more seeds. We continue the algorithm until the desired forest coverage

has been achieved. Therefore, upon completion we don’t guarantee that there is exactly Fc

coverage, but at least that much coverage.

Setting the parameters is relatively easy, knowing that at full seed strength, we will

have perfect circles of trees of size Rs. As we decrease Ss we begin getting more sparsely

populated forests because our seeds are not as hearty and don’t survive. The decay rates

provide a mechanism to remove old seeds from the population of seeds, again protecting

us from realizing perfect circled forests. Figure 2.2 provides a nice illustration of our forest

generator.
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(a) (b)

Figure 2.1: Forest seeding algorithm. (a) The initial forest configuration. Notice that the
trees do not represent exactly one square. (b) The seeding portion of the algorithm. Notice
that the overlap receives more seeds and is more likely to create a new tree.

Figure 2.2: An Example Forest.



Chapter 3

Physics-Based Asset Control

3.1 Asset Control – The Artificial Physics Framework

The UAVs are assumed to have a “terrain sensor” and a “target sensor”. The field of

view of the target sensor is presumed to be considerably less than the field of view of the

terrain sensor. The target sensor has a probability of detection Pd. The terrain sensor

returns a number from 0.0 to 1.0 that represents the percentage of foliage currently below

the vehicle. Our control strategy assumes that this latter information can be used by each

UAV to determine its desired separation from other UAVs.

The UAVs motion is controlled via the “artificial physics” (AP) framework. Virtual

physics forces drive a multi-agent system to a desired configuration or state. The desired

configuration (state) is one that minimizes overall system potential energy. In essence the

system acts as a molecular dynamics ( ~F = m~a) simulation.

At an abstract level, AP treats agents as physical particles. This enables the framework

to be embodied in vehicles ranging in size from nanobots to satellites. Particles exist in two

or three dimensions and are point-masses. Each particle i has position ~x and velocity ~v. We

use a discrete-time approximation to the continuous behavior of the system, with time-step

∆t. At each time step, the position of each particle undergoes a perturbation ∆~x. The

perturbation depends on the current velocity, i.e., ∆~x = ~v∆t. The velocity of each particle

at each time step also changes by ∆~v. The change in velocity is controlled by the force on

the particle, i.e., ∆~v = ~F∆t/m, where m is the mass of that particle and ~F is the force

on that particle.1 A frictional force is included, for self-stabilization. This is modeled as a

1F and v denote the magnitude of vectors ~F and ~v.
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viscous friction term, i.e., the product of a viscosity coefficient and the agent’s velocity.

For the current research, two general force laws are examined. The first is a general-

ization of the “gravitational” force law to include both attraction and repulsion. The force

law is:

F =
Gmimj

rp
(3.1)

F ≤ Fmax is the magnitude of the force between two UAVs i and j, and r is the distance

between the two UAVs. The variable p is a user-defined power, which ranges from 0.0 to 5.0.

When p = 0.0 the force law is constant for all distances. Currently, mi = 1.0 for all UAVs.

The force is repulsive if r < R and attractive if r > R. R is the desired separation between

that UAV and neighboring UAVs, and depends on the percentage of foliage currently below

that UAV. In order to achieve optimal behavior, the values of G, p, and Fmax must be

determined, as well as the amount of friction and the mapping of the percentage of foliage

to the desired separation R.

Our second force law is a generalization of the Lennard-Jones law, where:

F = 24ε

[

2d(σi + σj)
12

r13
− c(σi + σj)

6

r7

]

(3.2)

Again, F ≤ Fmax is the magnitude of the force between two UAVs i and j, and r is

the distance between the two UAVs. The variable ε affects the strength of the force, while

c and d control the relative balance between the attractive and repulsive components. In

order to achieve optimal behavior, the values of ε, c, d, and Fmax must be determined, as

well as the amount of friction and the mapping of the percentage of foliage to the desired

separation σ.



Chapter 4

Behaviors-Based Asset Control

4.1 Asset Control – Behavior-based Control

Due to the complexity in behavior of the physics-based controllers, we also implemented

several behavior-based controllers. Some of these controllers are amenable to mathematical

analysis (see Section 10.1).

• Bouncy: simply moves the assets vertically, “bouncing” off the top and bottom world

boundaries by reversing the UAV velocity upon reaching the edge of the surveillance

area. This is a realistic controller.

• Column: is a variation on plain vertical movement of the UAVs, except the world is

assumed to be toroidal, so that the assets “wrap around” in the same vertical column

when moving past the top and bottom edges of the surveillance area. Although this

is not realistic for one asset, it could work quite well for multiple assets in adjacent

columns.

• MagicCarpetArea: is an asset controller useful in testing statistical models of the

surveillance problem, in which assets “appear” at random locations throughout the

world during the simulation. UAV locations are selected using a uniform random

distribution such that target sensor footprints do not overlap.

• MagicCarpetColumn: similar in spirit to the MagicCarpetArea, this controller

causes assets to appear at random locations, but restricts the surveillance region to a

single column, so that the x coordinate of the asset remains fixed, as the y coordinate

18
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changes randomly, without target sensor footprint overlap between adjacent asset

locations.

• MagicCarpetDiagonal: causes assets to appear at random locations along both of

the major diagonals of the environment.

• SL: a realistic “Straight Line” asset controller which ignores foliage distribution, and

simply moves an asset in a straight line at a constant speed until it reaches a world

boundary, at which point the UAV will “reflect” from the edge by reversing its velocity

component in the direction perpendicular to the boundary, similar to how a billiard

ball bounces from an edge of the table.

• SSLAF: is a sophisticated controller (“Super Straight Line Avoid Forest”) based

on the premise that any surveillance time spent over foliage (which inhibits target

detection) is in some sense “wasted”, and thus attempts to minimize UAV flight

time over forested areas. At each time step, it uses its forest sensor to compute

the percentage of foliage visible through the sensor, and if that percentage exceeds a

specified threshold (the default is 10%), the asset then estimates the mass distribution

of the tree canopy underneath, and moves the asset directly away from the center

of foliage mass. Once the detected foliage percentage drops below the threshold,

the asset will switch into its normal surveillance mode, continuing to move with its

present velocity until an encounter with another patch of foliage or a bounce from the

surveillance perimeter takes place. Should the asset be initially deployed directly over

the foliage, it will continue moving in its initial direction until it leaves the foliage, or

an interaction with a world boundary causes it to turn around; thus given sufficient

time, the asset will find a foliage-free region.

• SLAF: is a simplification of the SSLAF controller, motivated by the fact that the

UAV foliage sensor may not be able to detect a distribution of individual trees (or

groups of trees) in the foliage cover, and thus the computation of the center of mass of

the tree canopy may be impossible or impractical to perform. Instead, this controller

simply reverses an asset’s course when the amount of foliage detected by the sensor
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exceeds a certain threshold, which is currently set to 50%. In the absence of the

foliage, SLAF and SSLAF are equivalent to the SL controller.

• Side: controller produces linear “sweeping bands” of target sensor coverage by moving

the UAVs back and forth along a linear path between two points on world edges.

The location and direction of these surveillance corridors is determined by the initial

location and velocity of each UAV, and may not include areas near the world boundary,

as the assets may reverse their course right after detecting the edge of the surveillance

area, and before scanning the boundary region with their target sensor.

• Stationary: assets hover over a fixed location in the surveillance perimeter, scanning

any targets that may pass underneath. This is a simple controller that does not

attempt to navigate around areas hidden by the foliage.



Chapter 5

Target Control

5.1 Target Control

For our baseline experiments our targets were stationary. We also have a target controller

for moving targets. The goal of the targets is to enter the environment from the left, cross

the environment, and exit from the right. The idea behind this “Gollum” (i.e., sneaky)

controller is to bias the targets to choose a path with maximum foliage, so that the time a

target spends exposed to the assets’ sensors is minimized. To achieve the effect, each target

has two attributes, a foliage sensor radius, and a foliage sensor angle, which define how far

and how wide the foliage sensor scans the environment ahead of the target to find foliage.

Each target attempts to move from left to right, and in the absence of foliage, it will move

at 0 degrees to the horizontal to maximize its speed toward the right edge. However, when

foliage is detected (which is a simple first hit-or-miss detection, no analysis is performed as

to how far or how large the foliage is), the target will alter its course to reach the foliage

cover at maximum speed. Once in the foliage, the target will again continue moving toward

the right edge, and attempt to stay within the foliage as long as possible.

For now, the target foliage sensor radius is 10 (in a 200×200 world), and the foliage
sensor angle is 60 degrees, so that the sensor scans +30 degrees and -30 degrees away from

the horizontal. These values seem to experimentally give a decent trade-off between seeking

foliage cover and avoiding large detours in target paths.

We have also used an alternative “Gollum” (i.e., avoid) controller, predicated on the

assumption that the UAV sensor can leave a footprint that is detectable by the target. If

the footprint is detected, then the target will pause for 3 time steps. If the signal is still

21
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there, the target will attempt to go around the sensor (by making at most a 90 degree turn

either up or down, until it no longer detects the sensor, at which point it will proceed with

its forward motion).

We have implemented a suite of target controllers, summarized as follows:

• Avoid: targets attempt to actively avoid the ground-level sensor footprint of the

overhead UAVs while crossing the area under surveillance. When a moving target

detects a UAV sensor beam in its path, it pauses for a short time, waiting for the

UAV to move away; if the sensor beam persists after the delay, then the target will

attempt to circumnavigate around the sensor footprint.

• Ribbon: targets follow a periodically sinuous trajectory, which varies slightly for

each target. The amplitude and period of the mean-path oscillation are kept low to

approximate realistic deviations from straight line travel due to terrain configuration.

• Sneaky: targets aim to minimize their exposure time to the UAV sensors by at-

tempting to maximize the amount of travel time spent underneath the foliage. This

target controller assumes that the targets may scan their local environment for foliage-

covered areas, and will select the next waypoint to be inside the forest if possible.

• Stationary: targets simply do not move.

• StraightLine: targets move in a horizontal line formation from the left world bound-

ary to the right edge of the surveillance area.

• MilitaryCombo: targets move in a combination of wedge, vee, echelon left/right,

and column formations from the left world boundary to the right boundary of the

surveillance perimeter. These target groupings mimic the actual tank battlefield for-

mations, and a representative sample of each formation type is shown in Fig. 5.1.

These formations are modeled after real-life scenarios, as found in the Department of

the Army’s Field Manual “Tank and Mechanized Infantry Company Team” (FM-71-1,

2002).

Figure 5.2 shows areas of forest, and 100 tanks. The triangle represents a tank that has

not yet been seen but is visible, and the “×” represents a hidden tank that has not been
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Figure 5.1: Targets arranged in the wedge, vee, echelon left/right, and column formations.

seen. The simulation also uses a “+” to represent a tank that has been seen and is visible,

and a “|” to represent a tank that is currently hidden but has been previously seen.
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Figure 5.2: The surveillance environment.



Chapter 6

Genetic Algorithms

6.1 Optimizing Parameters Using Genetic Algorithms

Given a generalized asset interaction potential, such as the standard AP force law or

Lennard-Jones (LJ), it is necessary to optimize the parameters to achieve the best per-

formance. We achieve this task using a genetic algorithm (GA). GAs are optimization

algorithms inspired by natural evolution. We mutate and recombine a population of candi-

date solutions (individuals) based on their performance (fitness) in our environment. The

individuals that have higher fitness than the average fitness of the population will repro-

duce and contribute their genetic makeup to future generations. One of the major reasons

for using this population-based stochastic algorithm is that it quickly generates individuals

that have robust performance.

We use a population size of 100 individuals and termination after 150 generations. The

genetic algorithm randomly initializes the first population, which is controlled via a random

number seed. Every individual in the population represents one possible instantiation of

either the AP or LJ potential, based on the potential function being optimized.

Further discussion of the genetic algorithm needs clear definitions of the parameter sets

used in these potential functions. Table 6.1 shows the individual representation of param-

eters for the standard AP potential and Table 6.2 shows the representation of parameters

for the Lennard-Jones potential.

The evolving parameters of the Artificial Physics potential are:

• Ga - gravitational constant of asset-asset interactions.

• Fmaxa - maximum force of asset-asset interactions.
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Table 6.1: Artificial Physics Individual
Ga Fmaxa pa Gw Fmaxw pw ca cb cc Fr

• pa - power of the force law of asset-asset interactions.

• Gw - gravitational constant of wall-asset interactions.

• Fmaxw - maximum force of wall-asset interactions.

• pw - power of the force law of wall-asset interactions.

• ca - coefficient in cax
2 + cbx+ cc which determines asset radii.

• cb - coefficient in cax
2 + cbx+ cc which determines asset radii.

• cc - coefficient in cax
2 + cbx+ cc which determines asset radii.

• Fr - friction in the system.

Table 6.2: Lennard-Jones Individual
ε Fmaxa c d Gw Fmaxw pw ca cb cc Fr

These evolving parameters of the Lennard-Jones potential are:

• ε - depth of the potential well.

• Fmaxa - maximum force of asset-asset interactions.

• c - non-negative attractive component.

• d - non-negative repulsive component .

• Gw - gravitational force of wall-asset interactions.

• Fmaxw - maximum force of wall-asset interactions.
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• pw - power of the force law of wall-asset interactions.

• ca - coefficient in cax
2 + cbx+ cc which determines asset radii.

• cb - coefficient in cax
2 + cbx+ cc which determines asset radii.

• cc - coefficient in cax
2 + cbx+ cc which determines asset radii.

• Fr - friction in the system.

The performance of each individual is the percentage of targets detected by the agent

collective within some period of time.

fitness =
targets-seen

total-number-of-visible-targets
∗ 100.0 (6.1)

The selection algorithm used by the parents to generate offspring is Baker’s Stochastic

Universal Sampling algorithm and offspring are generated using one-point crossover with a

crossover rate of 60%, and two different mutation operators. The first mutation operator

modifies a parameter by adding/subtracting an amount drawn from the interval [0, δ] with

uniform probability. The second mutation operator adds/subtracts an amount drawn from

a Gaussian distribution with 0.0 mean and δ standard deviation. Each parameter has a

1/p probability of being mutated (where p is the number of parameters in an individual).

Both of these operators ensure that the values in the parameter set stay within the accepted

range of values. Tables 6.3 and 6.4 below show the range of values for different parameters

for the Artificial Physics and Lennard-Jones potentials.

Table 6.3: Ranges of Values for Artificial Physics Individual
Ga Fmaxa pa Gw Fmaxw pw ca cb cc Fr

max 5000.0 5.0 2.0 5000.0 5.0 2.0 22.0 22.0 22.0 1.0

min 100.0 1.0 0.1 100.0 1.0 0.1 5.0 5.0 5.0 0.0
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Table 6.4: Ranges of Values for Lennard-Jones Individual
ε Fmaxa c d Gw Fmaxw pw ca cb cc Fr

max 50.0 5.0 20.0 20.0 5000.0 5.0 2.0 22.0 22.0 22.0 1.0

min 1.0 1.0 1.0 1.0 100.0 1.0 0.1 5.0 5.0 5.0 0.0



Chapter 7

Stationary Target Results

7.1 Results with Stationary Targets

For our baseline studies the targets were stationary. The 200×200 environment contains
20% foliage, 100 targets (some of which may not be visible) and 10 assets. The simulation

ran for 1000 time steps, assessing the quality of each individual within the GA. After the GA

is run, the best individual ever seen is extracted for further testing. Several experiments

were performed with that individual. The first was to generate 10 other environments

with the same characteristics. The second was to vary the percentage of foliage. The third

examined the performance when more assets are added, or assets are lost. Finally, the fourth

experiment examined the performance when the probability of detection Pd is decreased.

7.1.1 AP Results

In this subsection we examine the best individual found by the GA, when operating with the

standard AP force law. Table 7.1 gives the performance of the best individual on 10 different

environments with 20% foliage, 100 targets, and 10 assets. Results are averaged over 10

independent runs. Table 7.2 shows the performance of the best individual on environments

where the percentage of foliage changes. As can be seen, the AP individual achieves better

than 99% performance ranking in all circumstances.

The behavior exhibited by the best AP individual is interesting in that the assets act as

if they were connected by springs. The emergent behavior is a pulsation of assets, providing

robust coverage of the environment. This behavior is robust with respect to the addition

or deletion of assets and the lowering of the detection probability for the target sensor (see

29
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Table 7.1: Percentage of Targets Found by AP Potential

Env AP

1 100.000000

2 99.090909

3 99.508197

4 100.000000

5 99.032258

6 99.850746

7 100.000000

8 99.852941

9 99.824561

10 99.538462

Table 7.2: Percentage of Targets Found by AP Potential

Foliage (%) AP

0 100.000000

10 100.000000

20 99.750000

30 99.180328

40 99.818182

50 99.545455

60 100.000000

70 100.000000

80 100.000000

90 100.000000

Figure 7.1 for 20% foliage).

7.1.2 LJ Results

In this subsection we examine the best individual found by the GA, when operating with

the Lennard-Jones force law. Table 7.3 shows the performance of the best individual on 10

different environments with 20% foliage, 100 targets, and 10 assets. Results are averaged

over 10 independent runs. Table 7.4 shows the performance of the best individual on

environments where the percentage of foliage changes. As can be seen, the LJ individual
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Figure 7.1: Performance of the optimal AP individual.

achieves an even better performance than the AP individual.

Table 7.3: Percentage of Targets Found by LJ Potential

Env LJ

1 100.000000

2 100.000000

3 100.000000

4 100.000000

5 100.000000

6 99.846154

7 100.000000

8 100.000000

9 100.000000

10 100.000000

The behavior exhibited by the best LJ individual is interesting in that the assets act as

if they were gas molecules. This appears to be a consequence of the very short interaction

range. The emergent behavior again provides robust coverage of the environment. This

behavior is robust with respect to the addition or deletion of assets, and the lowering of the

detection probability for the target sensor (see Figure 7.2).

Figure 7.3 shows the Lennard-Jones potential operating with three assets. Notice that

there are three circles surrounding each asset. The innermost circle represents the target
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Table 7.4: Percentage of Targets Found by LJ Potential

Foliage (%) LJ

0 100.000000

10 100.000000

20 100.000000

30 100.000000

40 99.830508

50 100.000000

60 99.756098

70 100.000000

80 100.000000

90 100.000000
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Figure 7.2: Performance of the optimal LJ individual.

sensor field of view. For each of the assets another circle, which has a larger radius, repre-

sents the field of view of the foliage sensor. The third circle, which represents the desired

separation of the asset from other assets, is different in size for each agent. The smallest

circle is around asset ’1’, since it is not over any foliage. The next smallest is around asset

’2’, since it is partially over foliage. The largest is around asset ’0’, since it is almost en-

tirely over foliage. For stationary targets this strategy makes sense, since there is no point

in clustering assets over foliage.
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Figure 7.3: The surveillance environment,



Chapter 8

Sneaky Target Results

8.1 Results with Moving “Sneaky” Gollum Targets

We next allowed the targets to be controlled via their “Sneaky” controller. The experimental

methodology is the same as above.

8.1.1 AP Results

In this subsection we examine the best individual found by the GA, when operating with

the standard AP force law. Table 8.1 compares the performance of the best individual on

10 different environments with 20% foliage, 100 targets, and 10 assets. Results are averaged

over 10 independent runs. Table 8.2 compares the performance of the best individual

on environments where the percentage of foliage changes. The performance of the AP

individual has decreased. Although still quite good for lower percentage of foliage, the

AP individual starts to degrade with high percentage of foliage. In these situations the

“Gollum” controller ensures that the targets spend most of their time under cover, and

assets spend too much time flying over foliage.

Figure 8.1 illustrates the performance (over 20% foliage) with respect to the addition

or deletion of assets and the lowering of the detection probability for the target sensor.

Clearly, removing assets is more problematic in this situation, because halving the number

of assets performs worse than halving the probability of detection.
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Table 8.1: Percentage of Targets Found by AP Potential

Env AP

1 90.800000

2 91.800000

3 95.700000

4 94.949495

5 93.800000

6 91.900000

7 88.600000

8 84.300000

9 85.800000

10 91.600000

Table 8.2: Percentage of Targets Found by AP Potential

Foliage (%) AP

0 98.200000

10 98.400000

20 96.000000

30 95.757576

40 82.300000

50 42.727273

60 72.375000

70 53.797468

80 2.584270

90 30.000000
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Figure 8.1: Performance of the optimal AP individual.
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8.1.2 LJ Results

In this subsection we examine the best individual found by the GA, when operating with

the Lennard-Jones force law. Table 8.3 compares the performance of the best individual in

10 different environments with 20% foliage, 100 targets, and 10 assets. Results are averaged

over 10 independent runs. Table 8.4 compares the performance of the best individual in en-

vironments where the percentage of foliage changes. As can be seen, the LJ individual again

achieves better performance than the AP individual, although performance still degrades

somewhat with a higher percentage of foliage.

Table 8.3: Percentage of Targets Found by LJ Potential

Env LJ

1 96.700000

2 91.900000

3 96.400000

4 88.200000

5 90.700000

6 95.800000

7 93.000000

8 89.800000

9 84.200000

10 91.700000

Figure 8.2 illustrates the performance (over 20% foliage) with respect to the addition

or deletion of assets and the lowering of the detection probability for the target sensor.

Lowering the detection probability is more problematic in this situation.
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Table 8.4: Percentage of Targets Found by LJ Potential

Foliage (%) LJ

0 99.400000

10 98.300000

20 95.100000

30 89.600000

40 93.131313

50 73.300000

60 58.900000

70 67.407407

80 44.810127

90 41.176471
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Figure 8.2: Performance of the optimal LJ individual.



Chapter 9

Avoid Target Results

9.1 Results with Moving “Avoid” Gollum Targets

We finally allowed the targets to be controlled via their “Avoid” controller. The experi-

mental methodology is the same as above.

9.1.1 AP Results

In this subsection we examine the best individual found by the GA, when operating with

the standard AP force law. Table 9.1 compares the performance of the best individual on

10 different environments with 20% foliage, 100 targets, and 10 assets. Results are averaged

over 10 independent runs. Table 9.2 compares the performance of the best individual on

environments where the percentage of foliage changes.

Table 9.1: Percentage of Targets Found by AP Potential

Env AP

1 52.550000

2 44.850000

3 49.200000

4 50.550000

5 50.900000

6 51.950000

7 53.650000

8 43.000000

9 55.900000

10 51.500000
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Table 9.2: Percentage of Targets Found by AP Potential

Foliage (%) AP

0 65.750000

10 53.050000

20 60.300000

30 56.050000

40 30.600000

50 41.200000

60 26.130952

70 17.650000

80 23.417722

90 14.875000

Figure 9.1 illustrates the performance (over 20% foliage) with respect to the addition

or deletion of assets and the lowering of the detection probability for the target sensor.

Clearly, removing assets is more problematic in this situation, because halving the number

of assets performs worse than halving the probability of detection.
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Figure 9.1: Performance of the optimal AP individual.

9.1.2 LJ Results

In this subsection we examine the best individual found by the GA, when operating with

the Lennard-Jones force law. Table 9.3 compares the performance of the best individual in
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10 different environments with 20% foliage, 100 targets, and 10 assets. Results are averaged

over 10 independent runs. Table 8.4 compares the performance of the best individual in en-

vironments where the percentage of foliage changes. As can be seen, the LJ individual again

achieves better performance than the AP individual, although performance still degrades

somewhat with a higher percentage of foliage.

Table 9.3: Percentage of Targets Found by LJ Potential

Env LJ

1 86.950000

2 88.250000

3 83.400000

4 83.050000

5 85.250000

6 82.350000

7 81.800000

8 83.900000

9 84.600000

10 86.200000

Table 9.4: Percentage of Targets Found by LJ Potential

Foliage (%) LJ

0 88.450000

10 90.650000

20 89.150000

30 85.400000

40 76.150000

50 65.150000

60 61.700000

70 43.800000

80 36.275862

90 35.326150

Figure 9.2 illustrates the performance (over 20% foliage) with respect to the addition

or deletion of assets and the lowering of the detection probability for the target sensor.
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Interestingly, halving the number of assets is roughly analogous to halving the probability

of detection.
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Figure 9.2: Performance of the optimal LJ individual.



Chapter 10

Analysis

10.1 Mathematical Analysis

We have also initiated a mathematical analysis of some simpler behavior-based asset con-

trollers (see also “Strategies for Multi-Asset Surveillance”, presented at a special session on

cooperative agents at IEEE NSC 2005).

First, for the sake of tractability, we assume that the L × L environment contains no

forest, that Pd = 1.0, and that T targets are crossing the environment horizontally from

left to right. We consider several of the behavior-based controllers, with two types of target

detector. One target detector is square (i.e., a digital camera), that covers an area 4rt
2.

The other target detector is circular, covering an area of πrt
2.

10.1.1 Horizontal/Side Movement

This situation is the easiest to analyze. If one asset has target radius rt, then it will sweep

a row with height 2rt. If T targets are uniformly distributed along the left-most column as

they start their movement, then the asset will detect 2rtT/L targets. If there are α assets

with non-overlapping horizontal paths, then the expected number of targets detected is:

α2rtT

L
(10.1)

Note that the velocity of the asset is not relevant for this particular situation. The velocity

of the target must be greater than zero. This result is the same regardless of the form of

target sensor.
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10.1.2 Magic Carpet Column

Again, assume the asset has target radius rt. It will sweep a column of width d = 2rt.

Assume for the sake of simplicity that the velocity of the asset v = 2rt, so that overlap does

not occur. Then the number of steps required for the asset to traverse the column Sα = L/d.

Thus, assuming a square target sensor, any grid point in the column is hit with a probability

approximated by 1/Sα, and is not hit with probability approximated by 1− 1/Sα. Finally,
we need to calculate how long a target will be within that column. If the speed of the

target is vt, then the target will require St = d/vt steps to cross the column. Hence the

probability of that target not being detected is approximately (1− 1/Sα)St . Finally, the
expected number of targets detected is approximately:

T

[

1−
(

1− 1

Sα

)St
]

(10.2)

If there are α independent assets then the number of targets detected is:

T

[

1−
(

1− 1

Sα

)αSt
]

(10.3)

If the target sensor is circular, the number of targets detected is:

T

[

1−
(

1− π

4Sα

)αSt
]

(10.4)

10.1.3 Magic Carpet Diagonal

This situation is a small transformation of vertical column movement. Since moving along

the diagonal is a factor of
√
2 longer than moving along the column, both Sα and St must

be renormalized. Assuming a square target detector, in this situation Sα =
√
2L/d and

St =
√
2d/vt. If there are α independent assets then the number of targets detected is:

T

[

1−
(

1− 1

Sα

)αSt
]

(10.5)

If the target sensor is circular, the number of targets detected is:
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T

[

1−
(

1− π

4Sα

)αSt
]

(10.6)

10.1.4 Magic Carpet Area

Finally, if an asset is uniformly covering the domain then (assuming a square target sensor),

Sα = L2/4rt
2 and St = L/vt. If there are α independent assets then the number of targets

detected is:

T

[

1−
(

1− 1

Sα

)αSt
]

(10.7)

If the target sensor is circular, Sα = L2/πrt
2.

10.1.5 Straight Line

In the aggregate, a collection of assets moving with the SL controller act very much like

the Magic Carpet Area controller (all portions of the environment are uniformly covered).

Hence (assuming a square target sensor), Sα = L2/4rt
2 and St = L/vt. If there are α

independent assets then the number of targets detected is:

T

[

1−
(

1− 1

Sα

)αSt
]

(10.8)

If the target sensor is circular, Sα = L2/πrt
2.

10.1.6 Toroidal Column

As with the Magic Carpet Column controller, Sα = L/d and St = d/vt. Assuming a square

target controller, then (with one asset) the number of targets detected is:

T, if St > Sα (10.9)

TSt
Sα

, if St ≤ Sα (10.10)

With a circular target controller, the number of targets is well estimated by:



45

T

[

1−
(

1− π

4

)

St

Sα

]

, if St > Sα (10.11)

TπSt
4Sα

, if St ≤ Sα (10.12)

10.1.7 Bouncy Column

The analysis of the “bouncy” column controller is more complex. The variable St can be

thought of as the number of time steps needed by the target to cross the column created

by the asset. The idea for the bouncy theory came from the observation that at any given

point in time, a set of targets enters an assets’ column sweep area. The asset then has St

time steps to detect that set of targets. When viewed this way we observe that the asset

is equally likely to be in any of the Sα positions and each one allows the asset to cover a

certain number of new sensor areas within St time steps. Figure 10.1 shows this idea for

several different target velocities. We also are able to observe the most important fact from

this figure.

Figure 10.1: Examples of Bouncy derivation. L = 200, rt = 5. Left: vt = 1.0. Right:
vt = 2.2.

First there are always exactly (Sα − St) initial places where for each time step in St we
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cover a new area. Therefore, we are covering precisely (Sα−St)St new places for these initial
spots. We also note that each column finishes with a St. The only challenge remaining is

the interior section between these two other areas.

We see that the interior area begins decreasing until it reaches a certain point, and

depending on whether or not it is odd either has one or two of these lower extremes.

Otherwise the decreasing is symmetric to an increasing after the lower point. Therefore if

we can describe one side of the middle section, we have both sides. We can observe that

b
St

2
c−1

∑

i=1

(St − i)

This equation covers the decreasing portion until the lowest point without adding it at

all. In order to handle the lowest point we have the following equation

2St%2

(

St −
⌊

St
2

⌋)

Now putting all of the observations together we arrive at one equation that is able to

count all of the newly covered squares in order to determine the average number of newly

covered areas.

(Sα − St)St + 2

b
St

2
c−1

∑

i=1

(St − i) +

(

2St%2

(

St −
⌊

St
2

⌋))

+ St (10.13)

Although this has resulted in one equation, we notice that it isn’t as simple as it could

be. The modulus operator can be removed since we are simply dealing with two cases.

It would also be nice to remove the summation located inside as well. For the finishing

portions of the derivation we will be focusing on these two issues. We will start by trying

to remove the more difficult of the two parts, the summation.

2

b
St

2
c−1

∑

i=1

(St − i) = 2







b
St

2
c−1

∑

i=1

St −
b
St

2
c−1

∑

i=1

i







= 2

[

St

(⌊

St
2

⌋

− 1
)

− 1
2

(⌊

St
2

⌋

− 1
)(⌊

St
2

⌋)]

(10.14)
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Now that we have arrived at a simpler equation we still need to remove the floors from

the equation. There are two cases to consider. The first is the case where St is even.

⌊

St
2

⌋

=
St
2

2

[

St

(⌊

St
2

⌋

− 1
)

− 1
2

(⌊

St
2

⌋

− 1
)(⌊

St
2

⌋)]

=

2

[(

St
2

2
− St

)

− 1
2

(

St
2

4
− St
2

)]

=

(

St
2 − 2St

)

−
(

St
2

4
− St
2

)

=

(

3

4
St

2 − 3
2
St

)

(10.15)

The second case is when St is odd. Recall that we are trying to show that regardless of

being odd or even we can arrive at a simple equation. Therefore, if we are able to arrive at

the same equations for both even and odd cases, then we are successful.

⌊

St
2

⌋

=
St − 1
2

2

[

St

(⌊

St
2

⌋

− 1
)

− 1
2

(⌊

St
2

⌋

− 1
)(⌊

St
2

⌋)]

=

2

[

St

(

St − 1
2

− 1
)

− 1
2

(

St − 1
2

− 1
)(

St − 1
2

)]

=

2

[(

St
2 − St
2

− St

)

− 1
2

(

St − 1
2

− 1
)(

St − 1
2

)]

=

2

[(

St
2 − 3St
2

)

− 1
2

(

St
2 − 2St + 1

4
− 2(St − 1)

4

)]

=

2

[(

S2
2 − 3St
2

)

− 1
2

(

St
2 − 4St + 3

4

)]

=

(

St
2 − 3St

)

− 1
4

(

St
2 − 4St + 3

)

=
(

3

4
St

2 − 2St −
3

4

)

(10.16)

As you can see we didn’t arrive at the exact equation but we are very close. We will now
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examine the second part of the interior of the equation. Specifically the part that holds the

modulus operator. Once again we have two cases to consider. The first case to consider is

when St is even.

(

2St%2St −
⌊

St
2

⌋)

=

(

St −
St
2

)

And the second case is when St is odd.

(

2St%2St −
⌊

St
2

⌋)

= 2

(

St −
St − 1
2

)

Now putting this all together we will arrive at our final equation. The first case consid-

ered will be the even case as always.

(Sα − St)St +

(

3

4
St

2 − 3
2
St

)

+

(

St −
St
2

)

+ St

(Sα − St)St +
3

4
St

2

StSα −
1

4
St

2

The next case is the case where St is odd.

(Sα − St)St +

(

3

4
St

2 − 2St −
3

4

)

+ 2

(

St −
St − 1
2

)

+ St

(Sα − St)St +
3

4
St

2 − St −
3

4
+ 2St − St + 1

(Sα − St)St +
3

4
St

2 +
1

4

StSα − St
2 +

3

4
St

2 +
1

4

StSα −
1

4
St

2 − 1
4

As you can see both equations simplify out until we have very similar equations for

both. In fact the only difference is a 1
4 extra piece lying around on the odd side. To fix

this we could always take the floor of the last piece or just ignore it. Either appears to
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work fine. Recall that this calculation is the total number of freshly covered areas based on

each possible starting positions. We are after the average regardless of position, therefore

we divide our answer by Sα, and since finally we are equally likely to be in any of these

positions we divide by another Sα.

So, our final equation is:

StSα − St
2

4

Sα
2

(10.17)

To conclude, as with the prior controller, Sα = L/d and St = d/vt. Assuming a square

target controller, then (with one asset) the number of targets detected is:

T, if St > 2Sα (10.18)

T
[

StSα − St
2/4

]

Sα
2

, if St ≤ 2Sα (10.19)



Chapter 11

Summary

11.1 Discussion

In order to study multi-asset surveillance in a methodical manner, we have created a so-

phisticated simulation tool called “SURVE”. SURVE has several modules, including forest

generation, target controllers, asset controllers, a genetic algorithm, and modules for data

collection. It can be run in either of two modes. In learning mode the genetic algorithm

can be used to optimize parameters that are part of some asset controller. In performance

mode SURVE collects data on the performance of the optimized controller. Our current

implementation is in Java, to allow for cross-platform compatibility.

This report summarizes progress to date on optimizing potentials for the task of surveil-

lance of multiple assets in an environment containing targets of interest and areas of foliage

and non-foliage. We have concentrated on two potentials of interest: (1) the “classic”

AP potential and, (2) the Lennard-Jones potential. The Lennard-Jones potential, when

suitably optimized, provides superior performance in comparison with the AP potential.

Furthermore, the LJ potential is robust with respect to changes in the amount of foliage,

the amount of assets, and the quality of the target detector.

Finally, this report also summarizes initial mathematical analysis on a suite of simple

behavior-based asset controllers.
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Abstract

This paper describes our “sandbox” for the study of multi-asset surveillance, and explores

the performance of rule-based control strategies on this task. In order to maximize the

probability of detection of targets of interest, it is assumed that the team of unmanned air

vehicles (UAVs) must provide maximum sensory coverage of the terrain. We demonstrate,

however, both through simulation and mathematical analysis, that this is not always the

case.

13.1 Introduction

The focus of our research is to design and build rapidly deployable, scalable, adaptive, cost-

effective, and robust networks of autonomous distributed assets. The general purpose for

deploying tens to hundreds of such assets can be summarized as “volumetric control.” Vol-

umetric control means monitoring, detecting, reporting, and responding to environmental

conditions within a specified physical region.

In this paper we concentrate on the task of multi-asset surveillance. We assume there

are α UAV assets flying at a constant altitude over terrain that contains areas of forest and

non-forest. The assets have sensors to detect targets of interest, and they can determine

whether they are over areas of non-forest or forest. The target sensor cannot penetrate the

foliage – thus, regions of forest are of lower interest than those without forest. Each asset

has a target sensor with a field of view of πrt
2, and may also have a foliage sensor with

a field of view of πrf
2, where rf > rt. The total area of the region is much greater than

απrt
2. The target sensor also has a probability of detection Pd (which is assumed to be

1.0 in this paper). The goal is to locate T targets as reliably as possible, within some time

period t. Targets can be stationary or mobile. When they move they can take advantage of

the forest to provide cover for themselves. Our principal focus will be on whether providing

maximum sensory coverage of the terrain implies maximum target detection.
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13.2 Surveillance Sandbox

In order to study multi-asset surveillance in a methodical manner, we have created a so-

phisticated simulation tool called “SURVE”. SURVE has several modules, including forest

generation, target controllers, asset controllers, a genetic algorithm, and modules for data

collection. It can be run in either of two modes. In learning mode the genetic algorithm

can be used to optimize parameters that are part of some asset controller. In performance

mode SURVE collects data on the performance of the optimized controller. Our current

implementation is in Java, to allow for cross-platform compatibility.1

13.2.1 Forest Generation

Our “world” is a square with sides of length L, and L2 discrete grid points. Grid point

(i,j) can contain a tree or remain barren. We designed the algorithm to mimic a real forest,

such that there are large clusters of trees, yet there can be holes in the middle. These holes

allow assets to view targets.

The algorithm begins by placing an initial number of trees in the environment, and then

uses the natural process of “seeding” in order to generate the next phase of the forest. The

process continues until the desired amount of forest is reached. The controlling parameters

of the algorithm are:

• nf - The initial number of trees in the forest.

• Rs - The distance that seeds can travel.

• Ss - The amount of seeds spread during seeding.

• ds - The decay rate of the seeds.

• Fc - The desired forest coverage.

The algorithm begins by initializing nf trees. The placement of these trees is uniformly

distributed about the world. Rather than just initializing one square for a clump of trees,

1The learning aspect of SURVE will not be discussed in this paper.
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(a) (b)

Figure 13.1: Forest seeding algorithm. (a) The initial forest configuration. Notice that the
trees do not represent exactly one square. (b) The seeding portion of the algorithm. Notice
that the overlap receives more seeds and is more likely to create a new tree.

we initialize a cross section, to aid in the development of the forest, see Figure 13.1(a).

Once the initial trees have been placed, the next generation begins. For a given generation

the current trees in the population are allowed to seed the areas surrounding them with a

distance of Rs. The amount of seed laid at each position within this circle is defined as

Ss. The seeding process can be seen in Figure 13.1(b). Once everything has been seeded,

we begin selecting positions (i,j) that are seeded and determine if they become trees, by

selecting a uniformly distributed random number. If the value selected is less than that of

the seeds in the area, then the seeds have taken hold, and grow to become trees. Using

this procedure not all seeds will become trees; therefore, we apply a decay to those seeds

that have not become trees. Notice that as more trees surround an area, the greater the

probability of growing a tree, since it has more seeds. We continue the algorithm until the

desired forest coverage Fc has been achieved.

Setting the parameters is relatively easy, knowing that at full seed strength, we will

have perfect circles of trees of size Rs. As we decrease Ss we begin getting more sparsely

populated forests because our seeds are not as hearty and don’t survive. The decay rate

provides a mechanism to remove old seeds from the population of seeds, again protecting us

from realizing perfect circled forests. Figure 13.2 provides a nice illustration of our forest

generator. In this paper our world is 200×200 in size.
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Figure 13.2: An example forest with 100 targets of interest.

13.2.2 Target Controllers

Targets can either be stationary or mobile. When they move they try to cross the environ-

ment by moving from the left to the right. We are currently creating controllers modeled

after real-life scenarios, as found in the Department of the Army’s Field Manual “Tank

and Mechanized Infantry Company Team” (12). In this paper we will focus on one target

controller, called “Gollum”.

Gollum is a “sneaky” target controller that attempts to cross the environment by greedily

(and locally) choosing a path with maximum foliage, so that the time a target spends

exposed to the assets’ sensors is minimized. To achieve the effect, each target has a foliage

sensor with two attributes, a foliage radius and a foliage angle, which define how far and

how wide the foliage sensor scans the environment ahead of the target to find foliage. In the

absence of foliage, each target will move horizontally toward the right edge. However, when

foliage is detected, the target will alter its course to reach the foliage cover. Once in the

foliage, the target will again continue moving toward the right edge, and attempt to stay

within the foliage as long as possible. In this paper, the target foliage sensor radius is 10,
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and the foliage sensor angle is 60◦, so that the sensor scans +30◦ and −30◦ away from the
horizontal. These values yield a good trade-off between seeking foliage cover and avoiding

large detours in target paths.

Figure 13.2 shows areas of forest, and 100 targets. The triangle represents a target that

has not yet been seen but is visible, and the “×” represents a hidden target that has not
been seen. The simulation also uses a “+” to represent a target that has been seen and

is visible, and a “|” to represent a target that is currently hidden but has been previously
seen (the latter two are not shown in this figure).

13.2.3 Rule-Based Asset Controllers

We have implemented three rule-based asset controllers. The first, called “Straight Line”

(SL), is our simple base controller that moves in a straight line at velocity v. When the

environment wall is hit, the asset rebounds such that the angle of reflection equals the angle

of incidence. This extremely simple asset controller does not have a foliage sensor.

To illustrate the behavior of the SL controller, we monitored the “asset map” achieved

by this asset strategy. This map shows locations that were seen by at least one of the assets

during the given surveillance period. Areas with frequent sensor coverage are denoted by

bright white areas, and areas that were observed less frequently are shown in darker hues,

with black areas receiving no target sensor coverage at all. Since the target sensor can

not penetrate foliage, the forested areas are also black, regardless of whether assets flew

over those areas. The sample environment used for this set of experiments is shown in

Figure 13.2.

As can be seen in Figure 13.3, SL-controlled assets can achieve uniform world coverage,

given a moderate number of assets (ten assets appears to be enough to achieve this effect

for many sets of initial conditions). However, one weakness is that assets spend time over

foliage, which is not productive.

As a consequence we also implemented a “Straight Line Avoid Forest” (SLAF) controller.

This controller extends SL by presuming the presence of a foliage sensor, which allows the

asset to avoid spending valuable surveillance time over forested areas, where target sensors

are ineffective. The only information that is assumed to be available from this simple
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Figure 13.3: Sensor coverage with the SL strategy after 1,000 steps.

foliage sensor is the percentage of the sensor view field occupied by the foliage. Once that

percentage exceeds a certain threshold (currently set at 50%), the asset will reverse its

direction and will move away from the edge of the forest. Should the asset be initially

deployed directly over the foliage, it will continue moving in its initial direction until it

leaves the foliage, or an interaction with a world boundary causes it to turn around; in

either case, given sufficient time, the asset will end up in a foliage-free location.

As can be seen in Figure 13.4, SLAF-operated assets frequently move in a short, localized

pattern, and fail to achieve uniform sensor coverage regardless of the amount of time the

surveillance activity is carried out.

To address the poor coverage of SLAF, we finally implemented a “Super Straight Line

Avoid Forest” (SSLAF) controller that utilizes a more sophisticated foliage sensor. Upon

detecting an increased amount of foliage within its sensor (current threshold is set at 10%),

the asset will enter an “avoid forest” state, computing the mass distribution of the sensed

foliage and moving in the direction exactly opposite the center of foliage mass. Once the

detected foliage drops below the threshold, the asset will switch into its normal surveillance

state, continuing to move in its current direction until an encounter with another patch of

foliage or a bounce from an environment boundary occurs. This strategy was inspired by

Reynolds (8) and Balch (2).



60

Figure 13.4: Sensor coverage with the SLAF strategy after 1,000 steps.

Figure 13.5: Sensor coverage with the SSLAF strategy after 1,000 steps.
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As can be seen in Figure 13.5, SSLAF-controlled agents tend to achieve a far more more

comprehensive sensor coverage than SLAF, and they achieve this faster than do SL-based

assets (as indicated by the brighter coverage of SSLAF versus SL).

13.3 Results with Stationary Targets

We first tested the SL, SLAF, and SSLAF asset controllers with environments containing

100 stationary targets. The target radius rt = 2, while the foliage radius rf = 5. Regardless

of controller, all assets moved at speed v = 3. The percentage of foliage varied from 0%

to 70% in increments of 10%. The performance metric is the percentage of targets spotted

within t = 200 times steps, given that these targets were in fact visible. For each percentage

of foliage 100 forests were randomly generated, and for each of the forests the results were

averaged over 50 runs with different target and initial asset placements.

Table 13.1: Percentage of Stationary Targets Found (10 assets)

Foliage (%) SL SLAF SSLAF

0 41.18 41.18 41.18

10 39.05 22.47 39.87

20 41.25 20.09 41.11

30 39.25 17.43 43.12

40 38.98 15.83 44.53

50 40.67 17.73 50.19

60 41.35 18.19 54.57

70 39.98 20.13 57.58

Tables 13.1 and 13.2 give the performance of the three asset controllers, with α = 10

and α = 30 assets. With 0% foliage, all controllers perform equivalently, since the foliage

sensors have no function to perform. Also, the performance of SL is independent of the

percentage of foliage, since it has no foliage sensor. In general, SSLAF outperforms SL,

especially as the percentage of foliage increases. This is a consequence of the fact that SL

wastes time over areas of foliage. Finally, as expected, SLAF performs poorly, due to its

lack of ability to provide uniform coverage of the environment.
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Table 13.2: Percentage of Stationary Targets Found (30 assets)

Foliage (%) SL SLAF SSLAF

0 79.52 79.52 79.52

10 79.71 54.30 75.73

20 79.33 48.07 77.67

30 78.14 44.06 77.63

40 78.54 43.01 79.55

50 78.86 43.78 81.25

60 79.07 44.22 84.05

70 77.27 47.46 84.49

13.4 Results with Moving Targets

For the next set of experiments we allowed the targets to move according to their “Gollum”

controller. Target speed was 0.4, with all other experimental variables fixed as before.

Table 13.3: Percentage of Gollum Targets Found (10 assets)

Foliage (%) SL SLAF SSLAF

0 32.28 32.28 32.28

10 29.78 29.63 31.35

20 25.46 26.50 29.04

30 23.09 25.60 28.47

40 18.59 22.72 24.02

50 17.45 23.10 24.85

60 14.54 21.93 22.39

70 13.61 23.11 23.10

Tables 13.3 and 13.4 give the performance of the three asset controllers, with α = 10

and α = 30 assets. Again, with 0% foliage, all controllers perform equivalently, since the

foliage sensors have no function to perform. However, in general, the task is clearly more

difficult. This is a consequence of the Gollum controller, where targets actively seek out

foliage for cover. As expected, SSLAF still outperforms SL. However, the results with SLAF

look anomalous. With moving targets SLAF performs roughly equivalently to SSLAF (and
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Table 13.4: Percentage of Gollum Targets Found (30 assets)

Foliage (%) SL SLAF SSLAF

0 65.02 65.02 65.02

10 64.66 64.10 65.57

20 55.55 56.25 57.27

30 51.13 54.79 54.52

40 45.01 51.05 50.55

50 39.50 48.46 47.36

60 36.61 48.47 46.67

70 30.78 45.75 40.90

in fact outperforms SSLAF when there are a large number of assets and the percentage of

foliage is high)!

Recall that our initial motivation for creating the behavior of our asset controllers was

predicated on the belief that maximum sensor coverage of the domain implies maximum

target detection. For stationary targets, this belief was validated. However, as soon as the

targets start to move (with a speed that is quite slow relative to the asset speed), an asset

controller with extremely poor domain coverage provides very good target detection. The

next section provides a mathematical analysis of why this occurs.

13.5 Analysis

Informally, one can start to understand the error in our belief if one notices that the belief

was grounded in spatial reasoning. Clearly, for stationary targets, uniform coverage of the

space is necessary (if one assumes the targets also are uniformly distributed throughout

the space). The asset map shown in Figure 13.4 clearly indicates that vast portions of the

domain are unexplored, leading to poor target detection.

However, once targets move, spatial reasoning must be combined with temporal reason-

ing. To illustrate this, Figure 13.6 shows a “target map” illustrating the movement of the

Gollum targets over time, as the targets move from left to right through the environment.

The passage of targets through foliage are not shown, since they are not visible to the assets

during that time. One can notice that a clump of foliage provides a “focusing” effect that
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Figure 13.6: Gollum target coverage over 1,000 steps.

changes the density of targets (along a column) from uniform to highly non-uniform.

For the sake of target detection, it can be seen that if one mentally overlays Figures 13.4

and 13.6, all that is really required for detection is an intersection between the target paths

and the asset paths, at the same moment in time. Although the target and asset maps

provide spatial information, their intersection in time is not represented. For this we will

require some probabilistic analysis.

First, for the sake of tractability, we assume that the L × L environment contains no

forest, and that T targets are crossing the environment horizontally from left to right. We

consider four situations: (A) an asset is bouncing back and forth in the domain along the

horizontal, (B) an asset is bouncing along the vertical, (C) an asset is bouncing along the

major diagonal, and (D) an asset is bouncing in such a way as to uniformly cover the space.

We will then compute the expected number of targets that the asset will detect. Note that

the situations are specifically designed to differentiate between a highly uniform coverage

of the space versus a highly non-uniform coverage.

13.5.1 Horizontal Movement

This situation is the easiest to analyze. If one asset has target radius rt, then it will sweep

a row with height 2rt. If T targets are uniformly distributed along the left-most column as
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they start their movement, then the asset will detect T2rt/L targets. If there are α assets

with non-overlapping horizontal paths, then the expected number of targets detected is:

αT2rt
L

(13.1)

Note that the velocity of the asset is not relevant for this particular situation. The velocity

of the target must be greater than zero.

13.5.2 Vertical Movement

Again, assume the asset has target radius rt. It will sweep a column of width d = 2rt.

Assume for the sake of simplicity that the velocity of the asset v = 2rt, so that overlap

does not occur. Then the number of steps required for the asset to traverse the column

Sα = L/d − 1. Thus, any grid point in the column is hit with a probability approximated
by 1/Sα, and is not hit with probability approximated by (Sα − 1)/Sα. Finally, we need to
calculate how long a target will be within that column. If the speed of the target is vt, then

the target will require St = d/vt steps to cross the column. Hence the probability of that

target not being detected is approximately ((Sα − 1)/Sα)St . Finally, the expected number
of targets detected is approximately:

T

[

1−
(

Sα − 1
Sα

)St
]

(13.2)

If there are α independent assets then the number of targets detected is:

T

[

1−
(

Sα − 1
Sα

)αSt
]

(13.3)

13.5.3 Diagonal Movement

This situation is a small transformation of vertical movement. Since moving along the

diagonal is a factor of
√
2 longer than moving along the column, both Sα and St must

be renormalized. In this situation S ′
α =

√
2L/d − 1 and S ′

t =
√
2d/vt. If there are α

independent assets then the number of targets detected is:
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T

[

1−
(

S′
α − 1
S′
α

)αS′

t

]

(13.4)

13.5.4 Uniform coverage

Finally, if an asset is uniformly covering the domain then S ′′
α = L2/πrt

2 and S′′
t = L/vt. If

there are α independent assets then the number of targets detected is:

T

[

1−
(

S′′
α − 1
S′′
α

)αS′′

t

]

(13.5)

13.5.5 Theory versus Simulation

For confirmation of the theory, we ran SURVE with 100 Gollum targets, no forest, asset

speed v = 10, target radius rt = 5, and target speed vt = 0.4. The number of assets were

one, two, and four.

Table 13.5: Expected Number of Targets Detected

α Horizontal Vertical Diagonal Uniform

1 5 74 73 62

2 10 93 92.9 86

4 20 99.6 99.5 98

Table 13.6: Actual Number of Targets Detected

α Horizontal Vertical Diagonal Uniform

1 5 73 77 63

2 10 91 93 86

4 18 98 99 98

Table 13.5 shows the theoretical results from the above equations, for the four situations.

Table 13.6 shows the empirical results, averaged over 1000 runs. The empirical results

agree very well with the theoretical results, and are quite informative. First, as might be
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expected, horizontal movement of the asset yields the poorest performance (assuming that

targets are also moving horizontally). However, column movement and diagonal movement

definitely outperform uniform coverage! Hence, although uniform coverage is excellent for

stationary targets, this strategy is suboptimal for moving targets. If one re-examines the

asset map shown in Figure 13.4, one can clearly see the long vertical movements that are

yielding the good performance of SLAF. The diagonal asset control strategy is especially

interesting, since it will work well regardless of whether targets cross the domain horizontally

or vertically.

13.6 Summary

This paper presents the SURVE toolkit for experiments in multi-asset surveillance. SURVE

has several modules, including forest generation, target controllers, asset controllers, a ge-

netic algorithm, and modules for data collection. Due to the efficiency of implementation,

SURVE can be run with hundreds of assets and thousands of targets. We then present

evidence that although the goal of uniform coverage of a domain is excellent for detecting

stationary targets, it is suboptimal for moving targets. Theoretical analysis confirms the

empirical results, indicating that specialized patterns of surveillance will outperform more

generalized uniform coverage.

Prior work in this area includes Wu et. al., who used the SAMUEL learning system

to evolve rule sets that control a set of micro-air vehicles (MAVs) to provide maximum

coverage of a region (13). Wu expanded on this by combining chunking with a GA to

increase performance (14). Independently, Bugajska combined SAMUEL with a GA to find

an optimal sensor suite and reactive rules (3), and combined SAMUEL with ACT-R to

provide a cognitive model (4). Sukhatme et. al. have used a behavior-based approach to

surveillance with cooperative aerial and ground vehicles (11). Albekord et. al. summarize

a multi-tiered control strategy for multiple-asset surveillance, utilizing both air and ground

vehicles (1). Spears et. al. discuss a physics-based distributed algorithm for controlling

swarms of UAVs for surveillance (9; 10). Pack and Mullins propose a method for searching

an area according to four basic search rules, in order to provide complete coverage of the

domain (7). Finally, Krishna et. al. provide a surveillance system based on multiple mobile
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sensors (6). Interestingly, this latter paper uses an “X” formation of assets, where the assets

are placed along both major diagonals of the environment. However, these papers do not

provide theoretical justification for the behavior of the assets.

We are currently attempting to generalize our theoretical analysis to include forest

distributions. The eventual goal is to formally merge the spatial asset and target maps

into a temporal construct that is predictive of target detection probability, allowing us to

construct optimal asset strategies for given target controllers.
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14.1 Introduction

This manual covers the Surve simulator for automated outdoor surveillance, focusing on

beginner and intermediate concepts needed to install the Surve toolbox, conduct exper-

iments, and to collect data. The Surve toolkit is intended to facilitate the study of a

surveillance problem, where several mobile aerial assets attempt to detect the presence of

ground-based targets, which may or may not be moving. To simplify the discussion, this

manual assumes that the assets are uninhabited aerial vehicles (UAV), charged with detec-

tion of invading vehicles such as tanks and supply convoys, that may attempt to conceal

their presence by hiding under the tree canopy or by avoiding the UAV sensors.

Thus the toolkit is a test bed for different types of surveillance problems, and is dis-

tributed with several realistic control strategies for both the assets and targets. Users can

run interactive experiments, with real-time feedback via an advanced GUI, and can execute

a pre-programmed set of experiments in a non-interactive batch mode. Simple simulation

statistics are computed within the simulator, and raw simulation data can be stored for

later post-processing and in-depth analysis.

This document first outlines how to install the Surve toolkit and to run basic experi-

ments in the interactive mode, and then explains how to create experiment sets for batch

processing. It also provides a detailed overview of the GUI controls and the configuration

files. Please keep in mind that Surve software is still in development, and thus minor

inconsistencies or unresolved issues may persist in the working version of the program.

14.2 Quick Start

The Surve toolkit is written using the multi-platform Java2 programming language, and

is distributed in the form of a ZIP and TAR archives. It should run on any platform for

which a Java Runtime Environment (JRE) is available, and has been extensively tested with

Linux and Windows operating environments. To install the software, simply uncompress the

distribution file into an empty directory (consult your operating system manual or system

administrator for assistance with this step). The distribution archive includes all of the

compiled files along with the source code, and no further configuration is necessary.
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To execute the Surve simulator, change into the surveillance2 directory that was

created when you decompressed the distribution archive, and run the Java interpreter on

the graphics.simulator.Observer class. If you’re not sure how to execute Java programs

on your computer, please consult the Java help page at http://java.sun.com/help/. If you

use a UNIX-like operating environment, then simply execute the runVis.sh script from

a command prompt. When you see a window similar to the one shown in Fig. 14.1 then

you have successfully installed the Surve toolbox, and can start running experiments, as

outlined in the following sections.

Figure 14.1: Surve simulator window.

14.3 Surveillance Experiments

Before explaining how to use the Surve toolkit to conduct surveillance experiments, it will

be helpful to explain the methodology behind the design of the toolkit, so that it will be

easy to understand the structure of the experiments. For the purposes of the toolkit, we
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assume that surveillance is taking place in a rectangular region. The landscape is assumed

to be flat, but the presence of dense forest, impenetrable by the sensors, complicates the

surveillance problem. Two basic surveillance scenarios are of interest: a case where the

targets are stationary (perhaps awaiting deployment), and a case where targets move in

some organized, directed fashion (as may be the case of a motorized assault or a resupply

mission). In both scenarios, the monitoring UAVs move in a trajectory indicated by the

pre-programmed surveillance strategy for a given length of time, consistent with the fact

that UAVs have a time-of-flight limit imposed by limited energy resources.

During the surveillance activity, the UAVs continually scan the ground underneath

them, and whenever the sensor beam detects a target, the target is marked as “seen” by the

simulator as part of its data-collection activity. There are several user-specified parameters

that affect how the target sensor operates, but for clarity, the discussion of these and other

configuration parameters is presented in the following sections. Some of the asset strategies

distributed with the Surve toolkit also assume that the UAVs are equipped with forest

sensors, in hopes that the prudent use of extra sensor information will increase the number

of detected targets in a given time period.

14.3.1 Building Simulated Environment

The first step in the surveillance scenario is the construction of the environment. Two main

parameters characterize the area over which surveillance is conducted: the size, which is

a single integer dimension defining a square-shaped area, and the extent of world foliage

cover, specified as a floating point fraction less than one. World size is specified in the

conf/general.txt configuration file, in the Environment Parameters section using the

size=integer entry, where the positive integer value is the length of the world boundary in

screen pixels. Keep in mind that the larger the world size, the greater the computational

resources (memory and CPU power) that are needed to execute the simulator. The default

world size is 200× 200 units.
The foliage growth in the world creates areas where UAV target sensors are ineffective;

the notion of simulated foliage may also be thought of as an abstraction of other environmen-

tal obstacles that may inhibit surveillance sensors (e.g., caves or tunnels within a mountain
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Figure 14.2: Foliage distributions produced by the environment generator along with the
values of the corresponding algorithm parameters. These images show a 30% total area
coverage of the 200× 200 world.

terrain), although the environment builder supplied with the current version of the surveil-

lance simulator only mimics natural plant growth (e.g., a forest of trees). Environment

generator has several parameters that control the type of foliage distribution produced, all

of which are specified in the conf/forest.txt configuration file (see Fig. 14.2).

Different foliage maps can be created (and recreated) by specifying a nonnegative seed

to the random number generator (look for forestSeed=integer in the conf/forest.txt

file). The default value of -1 tells the simulator to use the current system time (in seconds)

as the random seed, so that a different forest is generated each time the simulator is run,

or when the forest is reset via the Episode menu (see Section 14.6 on simulator menus).

To control the foliage placement, first consider the following high-level description of the

forest generation algorithm: the forest begins as a collection of randomly placed “trees”,

where the initial number of these starter trees is given by the forestSize=integer parameter

in the conf/forest.txt file. Then, each tree produces “seeds” which fall to the ground

surrounding a given tree within the area specified by the seedRadius=integer configuration

parameter. Seed viability is controlled by the seedStrength=float value, which represents

the probability that a given seed will produce a new tree. Note that a location with two

seeds is twice as likely to produce a new tree than a location with just one seed, given

equal seed strengths. As time passes, each seed ages and becomes less likely to grow into

a tree; the rate at which the seeds weaken is specified by the seedDecay=float line in the
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forest configuration file. All grown trees continue to produce new seeds until the total

world foliage cover is equal to the forestCoverage=float parameter. Note: be careful when

using small values for seedRadius and seedStrength or large values for seedDecay and

forestSize, as it may be either impossible or may take a prohibitively long time to achieve

the specified forestCoverage with seeds that are extremely weak, decay very quickly, or

if the initial number of starter trees exceeds the world area; the ranges shown in Fig. 14.2

work well for many environments, and should be treated as a guide for future settings of

these parameters.

14.3.2 Initializing Targets

After constructing the desired simulated environment, the next step in the experiment

preparation process is the set up and initialization of targets – the objects which will be

detected during the surveillance activity. Each target is assumed to have a 1 × 1 unit
dimension, and may move with constant speed in any direction or remain stationary during

the simulation. A target’s movement trajectory is computed by a target controller, and

currently, all targets in the simulation share the same target controller algorithm during

any given run. However, a different target group behavior may be obtained quickly, without

restarting the simulator, by simply switching the target controller via the File menu (see

Section 14.6 on simulator menus).

In order to evaluate the performance of a given surveillance strategy, it is helpful to

enumerate the relevant properties and states of the simulated targets. Each target, at any

given time step, may be either visible or hidden. A visible target is located within the world

boundaries at a point without foliage cover. Likewise, a hidden target is either outside of

the world boundaries, or is located under the dense cover of the forest, and cannot be

observed with the surveying equipment. For moving targets, the “hidden” and “visible”

target states refer to the current state of a target, and may change many times during the

simulation, unlike the “seen” and “unseen” classification, that may only change once. As

the name implies, the “seen” category is used to describe targets that have been detected

by a UAV target sensor, while “unseen” targets are the ones that have successfully escaped

the detection. Note that all of simulated targets, including those that are stationary, start
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out in the unseen group, but will change their state to seen after being detected by the

UAVs. Thus, one of the most important performance metrics used to assess the merit of

any surveillance strategy during an experiment is the ratio of seen targets to all of the

targets that have been visible (and thus potentially detectable) at least once during the

run.

It will come as no surprise that the UAV surveillance performance depends on the move-

ment strategy employed by the targets. In other words, a surveillance approach that does

well in detecting stationary targets might do poorly in detecting moving targets, and vice

versa. Therefore, the Surve simulator is distributed with several realistic target controllers

that can be selected at run time:

• Avoid: targets attempt to actively avoid the ground-level sensor footprint of the

overhead UAVs while crossing the area under surveillance. When a moving target

detects a UAV sensor beam in its path, it pauses for a short time, waiting for the

UAV to move away; if the sensor beam persists after the delay, then the target will

attempt to circumnavigate around the sensor footprint.

• Ribbon: targets follow a periodically sinuous trajectory, which varies slightly for each

target. The amplitude and period of the mean-path oscillation are kept low to ap-

proximate realistic deviations from straight line travel due to terrain configuration.

• Sneaky: targets aim to minimize their exposure time to the UAV sensors by attempting

to maximize the amount of travel time spent underneath the foliage. This target con-

troller assumes that the targets may scan their local environment for foliage-covered

areas, and will select the next waypoint to be inside the forest if possible.

• Stationary: targets simply do not move.

• StraightLine: targets move in a horizontal line formation from the left world boundary

to the right edge of the surveillance area.

• militaryCombo: targets move in a combination of wedge, vee, echelon left/right, and

column formations from the left world boundary to the right boundary of the surveil-
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Figure 14.3: Targets arranged in the wedge, vee, echelon left/right, and column formations.

lance perimeter. These target groupings mimic the actual tank battlefield formations,

and a representative sample of each formation type is shown in Fig. 14.3.

Because of the varying nature of the trajectories generated by each target controller type,

some configuration parameters differ significantly for each controller choice. However, one

common aspect of target initialization is that it is done at random, using either a uniform

or a normal probability distribution. The random number generator seed used by the

target controllers is given by the targetSeed=integer parameter in the conf/general.txt

configuration file; the default is a negative value, which yields a different random sequence

each time the simulator is invoked). The number of targets in the simulation is controlled by

the targets=integer parameter, with the default value of a 100. Target speed is specified

by the targetSpeed=float parameter, and the units match world dimensions, so that a

StraightLine target with a speed of 1.0 will cross a 200 × 200 world in 200 simulation
steps, unless collision avoidance procedures slow down the moving target. The targetSpeed

parameter is ignored by the Stationary targets.

Additional control of the targets is possible through the targetOffset=float parameter,

which specifies the horizontal x coordinate location of the initial target placement random

distribution center point in terms of the world size. For instance, a targetOffset=0.0
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setting places the center of the target distribution in the middle of the surveillance area, so

that all targets start out within the surveillance area boundary (this should be the setting

used for most experiments with the Stationary target controller). Setting targetOffset

to -1.0 causes all of the targets to be initially placed before the left world edge, outside

of the surveillance area, but still using the same random distribution (think of the target

placement as just being shifted to the left by one world size); this is useful if the UAV units

require time to organize, and a delay between the UAV deployment and the first target

appearance is desired. Note that due to the fact that the standard Surve controllers move

targets from left to right, positive targetOffset values have little utility. The initial target

controller may be selected via the targetControl=string parameter, and its value should

be a fully-qualified Java class name, such as targetcontrol.Stationary; alternatively, the

target controller may be changed via the File menu (see Section 14.6 on simulator menus).

14.3.3 Initializing Assets

Intelligent, efficient, and effective control of the surveillance UAVs is the major topic of

interest driving this research. The chief aim is to devise a surveillance strategy that max-

imizes the target detection rate by maximizing the benefits of asset-asset collaboration,

sensor data utilization, and clever exploitation of the existing domain knowledge. Thus it

is of little surprise that the thrust of the Surve development work focused on the asset

behavior.

A conceptual schematic of the Surve UAV asset model is given in Fig. 14.4, which

depicts a single asset in the vicinity of some foliage, and shows the ranges of the three types

of sensors assumed to be present on every UAV in the simulation. The most basic aspect

of the UAV model is the asset representation, which assumes an arbitrarily small asset size

(a point model) with a real-valued coordinate location. The most important UAV sensor

is of course the target sensor, whose radius is specified in the conf/asset.txt file by the

targetRadius=integer parameter.

Because of the critical role the target sensor plays in the surveillance problem additional

configuration options are available for customizing target sensor characteristics. The shape

of the ground-level target sensor footprint is controlled by the targetSensorType=string



81

Figure 14.4: The model of a surveillance asset, showing the three on-board sensor types
with their ranges.

parameter, with possible values of circle or square. In case of a square target sensor, the

targetRadius parameter defines half the width of the ground-level sensor footprint, so that

a setting of targetSensorType=square and targetRadius=5 will produce a sensor with a

10×10 target detection area. The Boolean targetSensorIncludeBounds=0 |1 parameter is
a fine-tuning option which controls whether the sensor will detect targets that are located

right on the sensor footprint boundary. A value of 0 indicates that a strict < (less than)

comparison is to be used when computing distances, thus excluding targets that only touch

the sensor boundary, and a value of 1 specifies that a ≤ (less than or equal) test be used
throughout the simulation, allowing detection of such targets. Perhaps the most crucial

parameter is the detectionProb=float specifier, which determines the percentage of sensor

readings that correctly detect a target when it is in the view-field of the sensor. Thus a

setting of 0.0 will inhibit all target detection (extreme sensor noise), and a setting of 1.0

will construct a perfect target sensor, which always properly identifies a target when the

UAV passes over it.

Two other types of sensors shown in Fig. 14.4 are the asset-to-asset sensor and the fo-

liage detector. These sensors are “optional” in the sense that only some of the built-in UAV

controllers make use of them. In particular, interactions between assets are managed by

controllers based on the Artificial Physics framework (www.cs.uwyo.edu/∼wspears/ap.html
for more information). Likewise, information about foliage cover in the environment is
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exploited by only a few of the asset controllers included in the default Surve distribu-

tion (the size of the circular area covered by the foliage sensor of each UAV is set by

the foliageRadius=integer parameter in the conf/asset.txt configuration file). The list

below provides the detailed information about each of the standard asset controllers:

• AP: is a physics-based controller which uses a generalized form of Newton’s Law of

Universal Gravitation, ~F = Gm1m2/r
p, to compute a virtual force between asset 1

and asset 2, with respective virtual masses of m1 and m2, separated by a distance r

(see Fig. 14.5). In many cases, the assets are assumed to have the same virtual mass,

along with some desired separation dictated by practical constraints, such that the

pair-wise inter-asset force is attractive if the actual separation between UAVs exceeds

the desired range, and becomes repulsive if the assets move too close to each other. By

varying the parameters which define this force, a variety of dynamically stable UAV

formations can be self-organized and maintained in a completely distributed fashion.

The force law may be altered manually using the controls in the bottom-right window

panel (see Section 14.6 on simulator controls), or alternatively, the appropriate set of

values may be constructed using a Genetic Algorithm, and loaded into the simulator

from the evolution history file via the GA menu (see Section 14.6 on simulator menus).

• Bouncy: is a controller motivated by the need to carry out statistical experiments,

and simply moves the assets vertically, “bouncing” off the top and bottom world

boundaries by reversing the UAV velocity upon reaching the edge of the surveillance

area.
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Figure 14.5: Plot of a sample force function used by the AP asset controller, with rdesired =
1.5 and p = 2.
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• Column: is a variation on plain vertical movement of the UAVs, except the world is

assumed to be toroidal, so that the assets “wrap around” in the same vertical column

when moving past the top and bottom edges of the surveillance area. Modeling such

behavior is helpful when performing statistical analysis of the surveillance problem.

• LJ: is another physics-based asset controller which uses a generalized Lennard-Jones

force function:

~F = 24ε

[

d(σ1 + σ2)
6

r7
− 2c(σ1 + σ2)

12

r13

]

to facilitate UAV formation building (see Fig. 14.6). The two fractions in the above

formula control the balance between the attractive and repulsive components of the

force with respect to the current UAV separation radius r and the desired separation

radii σ1 and σ2 for each pair of assets. As in the case of the AP controller, parameters

may be set with the slider bars on the front panel, or can be loaded from a GA

evolution trace file. Note that this controller uses the AP force law when computing

the force between an asset and a surveillance area boundary.

• LJMass: is very similar to the LJ asset controller, but it attempts to account for the

foliage growth (using the foliage sensor mounted on each UAV) by slowing down the

UAV near the boundaries of the forest.

• MagicCarpetArea: is an asset controller useful in testing statistical models of the

surveillance problem, in which assets “appear” at random locations throughout the

world during the simulation. UAV locations are selected using a uniform random
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Figure 14.6: Plot of a sample force function used by the LJ asset controller, with σ1 = σ2 =
1.5.
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distribution such that target sensor footprints do not overlap. This controller ignores

the maximum asset speed specified in the conf/asset.txt file.

• MagicCarpetColumn: similar in spirit to the MagicCarpetArea, this controller causes

assets to appear at random locations, but restricts the surveillance region to a single

column, so that the x coordinate of the asset remains fixed, as the y coordinate changes

randomly, without target sensor footprint overlap between adjacent asset locations.

• SL: a realistic asset controller which ignores foliage distribution, and simply moves an

asset in a straight line at a constant speed until it reaches a world boundary, at which

point the UAV will “reflect” from the edge by reversing its velocity component in the

direction perpendicular to the boundary, similar to how a billiard ball bounces from

an edge of the table.

• SLAF: is an asset controller which relies on a simple UAV foliage sensor, and is based

on the premise that any surveillance time spent over foliage (which inhibits target

detection) is in some sense “wasted”, and thus attempts to minimize UAV flight time

over forested areas. The controller assumes that the only output available from the

tree sensor is the percentage of foliage cover in the sensor’s view-field. When the

sensed canopy cover exceeds a certain threshold (currently set to 50%), the UAV

reverses its course, and begins moving in the opposite direction. Should the asset

be initially deployed directly over the foliage, it will continue moving in its initial

direction until it leaves the foliage, or an interaction with a world boundary causes it

to turn around; thus given sufficient time, the asset will find a foliage-free region. In

the absence of the foliage, this controller’s behavior is equivalent to the SL controller

(SLAF is an abbreviation of Straight Line Avoid Forest).

• SSLAF: a natural extension of the SLAF strategy, the Super SLAF controller makes

use of a more sophisticated foliage sensor, which can compute the spatial distribution

of the trees within the sensor’s view. At each time step, a SSLAF-controlled UAV uses

its forest sensor to compute the percentage of foliage visible through the sensor, and

if that percentage exceeds a specified threshold (the default is 10%), the asset then

estimates the mass distribution of the tree canopy underneath, and moves directly
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away from the center of the foliage mass. Once the detected foliage percentage drops

below the threshold, the asset will switch into its normal surveillance mode, continuing

to move with its present velocity until an encounter with another patch of foliage or

a bounce from the surveillance perimeter occurs.

• Side: controller produces linear “sweeping bands” of target sensor coverage by moving

the UAVs back and forth along a linear path between two points on world edges.

The location and direction of these surveillance corridors is determined by the initial

location and velocity of each UAV, and may not include areas near the world boundary,

as the assets may reverse their course right after detecting the edge of the surveillance

area, and before scanning the boundary region with their target sensor.

• Stationary: assets hover over a fixed location in the surveillance perimeter, scanning

any targets that may pass underneath. This is a simple controller that ignores the

asset speed parameter in the asset.txt configuration file, and does not attempt to

navigate around areas hidden by the foliage. Please keep in mind that the Avoid

target strategy is 100% successful in avoiding detection by the Stationary assets.

As mentioned in the preceding description of the asset controllers, the maximum UAV

speed is given by the assetSpeed=float parameter in the conf/asset.txt file, and it speci-

fies the maximum distance (in terms of the world size units) that any given asset may travel

in one simulation time step. The actual speed of an asset during the simulation might vary

due to the UAV formation requirements or other constraints imposed by the specific con-

troller. Also, because of the extensive use of the random data by some of the controllers,

any particular sequence of random numbers and the corresponding change in behavior may

be regenerated by using the same, non-negative value for the assetSeed=integer parameter;

otherwise, a negative value for this parameter, which is the default, will cause the simulator

to use the current system time in seconds, resulting in a new random asset initialization

each time the simulator is run.
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14.4 Genetic Algorithm Module

The Surve toolkit includes a Genetic Algorithm (GA) module, whose purpose is to aid in

the investigation of the impact of different force law options and parameter ranges on target

detection rate. For the UAV asset controllers based on a generalized interaction potential,

such as Artificial Physics (AP) or Lennard-Jones (LJ), it is sometimes possible to optimize

the force function parameters in order to achieve improved surveillance performance. We

accomplish this task by using genetic algorithms. Genetic algorithms can be thought of

as an optimization technique, inspired by the process of the biological evolution. During

execution, individual parameter sets in the population are mutated and recombined based

on their performance (or fitness) in a given surveillance simulation run. The individuals with

higher fitness than the average fitness of the population will survive through reproduction,

and will contribute their genetic makeup to the future generations. One of the major reasons

to employ a population-based stochastic algorithm is the rapid emergence of well-performing

individuals, as well as the robustness of the individual performance improvements across a

wide range of environmental configurations.

Typically, we use a population size of 100 individuals, and set the evolution termination

criteria of the algorithm to 150 generations. The GA module generates an initial population

of different potential function parameter sets using the random number seed specified in

the conf/gaapconf.txt or conf/galjconf.txt files, so by changing this random seed, the

program can generate many different sets of candidate parameter sets. Hence, every indi-

vidual in the population represents one possible instantiation of either AP or LJ potential

function optimization.

The following is a step-by-step guide on how to run the GA module, and how to set

parameter settings of the potential functions using the configuration files, along with an

explanation of the GA fitness function, data generation and storage, and the mechanism

for visualizing the GA-evolved asset behavior.
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14.4.1 Running the GA

The GA module included with the toolkit is located in the ga directory. In a UNIX-like

operating environment, a user may simply execute the runGA.sh shell script. Otherwise,

manually invoke the java ga.PICKGA class. Both of these options will begin evolution of

parameters for the physics-based asset controller specified in the conf/general.txt file. If

the gavisual=true |false parameter in the conf/galjconf.txt or conf/gaapconf.txt is
set to true, then a window similar to the one shown in Fig. 14.1 (but without the information

and control panels) will appear, showing asset behavior for the current individual parameter

set. Even if the GA visualization window is initially enabled, closing it at a later time will

not affect the GA run. If needed, pressing the Ctrl+C key combination (or the equivalent

function of an Integrated Development Environment) should terminate the GA process.

14.4.2 Parameter Settings

The selection of the potential function for GA optimization is made via the assetControl

parameter in the conf/general.txt file, where the three valid evolutionary asset types are:

assetcontrol.AP, assetcontrol.LJ, and assetcontrol.LJMass. The LJMass controller,

unlike the simpler LJ algorithm, attempts to minimize the amount of time the assets spend

over the foliage-covered areas.

In addition to specifying the asset controller, do not forget to check the setting of the

target controller, specified by the targetControl parameter. Since the GA will measure the

reproductive fitness of individuals based on their target-detecting rate, the choice of a target

movement strategy will have a strong influence on the type of the individuals discovered

through evolution.

Force Functions’ Parameter Ranges

There are two GA-specific configuration files in the conf folder. Evolution of the AP assets

is controlled by the conf/gaapconf.txt file, while both the LJ and LJMass asset behaviors

evolve according to the parameters in the conf/galjconf.txt file. Table 14.1 shows the

range of valid values for AP populations, and Table 14.2 lists the valid ranges of the LJ and

LJMass individuals.
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Ga. Fmaxa. Pa. Gw. Fmaxw. Pw. CoeffA CoeffB CoeffC Fric

Min. 100 1 0.1 100 1 0.1 5 5 5 0

Max. 5000 5 2.0 5000 5 2.0 22 22 22 1

Table 14.1: Ranges of Values for AP Individuals

ε Fmaxa. c d Gw. Fmaxw. Pw. CoeffA CoeffB CoeffC Fric

Min. 1 1 1 1 100 1 0.1 5 5 5 0

Max. 50 5 20 20 5000 5 2.0 22 22 22 1

Table 14.2: Ranges of Values for LJ and LJMass Individual

Explanation of the Parameters

The AP individuals:

• Ga. - gravitational force of asset-asset interactions.

• Fmaxa. - maximum force of asset-asset interactions.

• Pa. - exponent of the force law for asset-asset interactions.

• Gw. - gravitational force of wall-asset interactions.

• Fmaxw. - maximum force of wall-asset interactions.

• Pw. - exponent of the force law for wall-asset interactions.

• CoeffA - coefficient a of the second degree polynomial that determines the radius of
an asset.

• CoeffB - coefficient b of the second degree polynomial that determines the radius of
an asset.

• CoeffC - coefficient c of the second degree polynomial that determines the radius of
an asset.

• Fric - friction in the system.

The LJ and LJMass individuals:
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• ε - depth of the potential well.

• Fmaxa. - maximum force of asset-asset interactions.

• c - non-negative attractive component.

• d - non-negative repulsive component.

• Gw. - gravitational force of wall-asset interactions.

• Fmaxw. - maximum force of wall-asset interactions.

• Pw. - exponent of the force law for wall-asset interactions.

• CoeffA - coefficient a of the second degree polynomial that determines the radius of
an asset.

• CoeffB - coefficient b of the second degree polynomial that determines the radius of
an asset.

• CoeffC - coefficient c of the second degree polynomial that determines the radius of
an asset.

• Fric - friction in the system.

Common Evolution Parameters

The other common parameters stored in both gaapconf.txt and galjconf.txt files are the

population size (populationsize=integer), number of generations (generations=integer),

number of parameters in each individual, i.e., the length of an individual (length=integer),

mutation rate (mutationrate=float), crossover rate (crossoverrate=float), GA random

seed (gaseed=integer), and evolution visualization preference (gavisual=true |false). All of
these settings can be altered to fit a variety of experimental needs. Keep in mind that the

negative value for the gaseed parameter will automatically set the pseudo-random number

generator seed to the current system time, but otherwise will keep reusing the same random

number sequence, resulting in the identical initial population for each new GA run.
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Asset Controller Requested--> AP

...Initiate GA for Physicomimetics...

Log Level 0: Basic logging information

...Growing Forest

...Forest Growth Complete: 0.0

...% found 13 % inside 100.0

...Growing Forest

...Forest Growth Complete: 0.0

...% found 21 % inside 100.0

...Growing Forest

...Forest Growth Complete: 0.0

...% found 17 % inside 100.0

...Growing Forest

...Forest Growth Complete: 0.0

...% found 12 % inside 100.0

...Growing Forest

...Forest Growth Complete: 0.0

...% found 15 % inside 100.0

GA Individual Fitness: 15.6

Figure 14.7: Sample runtime output of the Surve GA module.

14.4.3 Computing Fitness of Force Function Parameter Sets

In order to evolve the most fit individuals in the population, the simulator executes a

surveillance scenario with a randomly generated forest configuration, and then calculates

the fitness for each individual force law parameter set in the population. The fitness, or

the performance, of an individual is the percentage of successful target localizations by

the entire agent collective during the surveillance activity, whose duration is set by the

timeSteps parameter in the conf/general.txt configuration file. The following formula

is used when computing the fitness of an individual:

fitness =
targets seen

total number of visible targets
∗ 100

In addition, the fitness of each individual is also averaged over a specified number of differ-

ent random forest configurations (currently fixed at 5), where the initial asset and target

locations are different for each new forest instantiation. A sample of the runtime GA module

output is shown in Fig. 14.7.
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The selection of the individuals for reproduction is performed using the Baker’s Stochas-

tic Universal Sampling algorithm, and the offspring is generated using a one-point crossover,

with the rate specified by the crossoverrate configuration parameter, with some addi-

tional individual changes possibly introduced via a Gaussian mutation, governed by the

mutationrate parameter. The Gaussian random mutation used by the Surve toolkit comes

from a standard normal distribution with a 0 mean and a variance of 1. The implementa-

tion of the Gaussian mutation conforms closely to the widely accepted methodology in the

evolutionary algorithms literature. In this case, the Gaussian random mutation method has

a 1/(individual length) probability of mutation. Note that this implementation will reject

any offspring whose parameter values fall outside of the accepted range (see Tables 14.1

and 14.2).

14.4.4 Data Generation and Storage

During execution, the GA module generates three text files which contain performance-

related information about the population of the force function parameters. These files are

stored in the log folder, inside the surveillance2 directory. Table 14.3 lists the names

along with a brief description of the three output files generated by the evolution module.

Each output file contains the sequential generation number, as well as the sequential

identification of each individual in the population along with that individual’s fitness (i.e.,

surveillance performance). The best worst file only shows the best and the worst per-

forming individuals for each generation, and is helpful in evaluating the efficacy of the

evolutionary strategy. The history file contains the generation count, an individual’s loca-

tion in the population, and an individual’s random seed, but does not show the fitness of

the individuals. Each output file lists all of the force function parameter values represented

by each GA individual.

Contents AP LJ LJMass

All Individuals GAAPresults GALJresults GALJMresults

Best and Worst Individuals APbest worst LJbest worst LJMbest worst

All Individuals with Random Seeds APhistory LJhistory LJMhistory

Table 14.3: Output files (*.txt) from the GA module.
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14.4.5 Using GA Individuals

The Surve toolkit provides the functionality to directly process the output files generated

by the GA module by first loading the entire history file, and then instantiating the asset

controller with the parameters from the evolved individual. Once the GA completes its run

and generates the output files, the GA menu can be used to process that output and to

conduct experiments with the evolved individuals (for more information on the GA menu,

please see Section 14.6 on simulator menus). The GA menu contains two actions: Load GA

History and Load GA Individual. To create an asset controller based on a GA individual,

first load the GA history file, and then load a specific GA individual by specifying both the

generation and individual identification tags. The Load GA History menu item will display

a “File Open” dialog window initially positioned in the log directory, through which the

user should select the correct GA history file and then press the Open button to load the

history file into the Surve application. Then choose the Load GA Individual menu item,

which will display a window similar to the one shown in Fig. 14.8, where the generation and

individual identification numbers can be specified. Once this information is entered, the

user can observe this individual’s surveillance behavior by simply clicking the Start button

on the main control panel of the simulator (see Fig. 14.1).

Figure 14.8: Load GA Individual window.

14.5 Simulator Parameters

Upon startup, Surve reads several text-based configuration files from the conf directory to

initialize its components. The list below contains the names of all of the files, a brief descrip-

tion of the simulator functionality that depends on that file, and then provides a detailed
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explanation of each configuration parameter, its default value, and in parenthesis, the type

of the parameter. One important fact to remember is that configuration parameter values

are only examined during Surve initialization, and changing the parameter values in the

configuration files while the simulator is running will have no effect on the currently running

instance of the simulator. To change system parameters at run time, please use the control

panel sliders and option menus in the Surve graphical user interface (see Section 14.6).

14.5.1 General Parameters

The conf/general.txt configuration file provides values for target control parameters, as

well as the general Surve simulator parameters.

• agents=5 (positive integer) - number of UAV assets in the simulation.

• targets=100 (non-negative integer) - number of targets in the simulation.

• targetSeed=-1 (integer) - target random number generator seed; system time is used

when the value is negative.

• targetSpeed=0.4 (non-negative float) - maximum speed of the targets.

• targetOffset=-1.0 (float) - target initial position horizontal offset in terms of the

world size.

• targetControl=targetcontrol.Sneaky (string) - target movement strategy, entered

as a fully-qualified Java class name.

• assetControl=assetcontrol.SL (string) - asset control strategy, specified as a fully-

qualified Java class name.

• size=200 (positive integer) - world size (in screen pixels).

• timesteps=1000 (positive integer) - number of simulation steps in each surveillance

scenario.

• sleeptime=0 (non-negative integer) - number of milliseconds between screen updates

in visual experiments.
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• debug=0,3 (integer list) - selection of debugging events to be reported to the console.

Currently, four types of debugging events are available: (0) basic logging information,

(1) random seed information, (2) step-by-step target localization information, (3)

target collision errors.

Please keep in mind that both asset and target controller strategies must be named in the

configuration file with their fully-qualified Java class names (i.e., the name of the strategy

must be prepended with the assetcontrol or targetcontrol Java package name).

14.5.2 Asset Parameters

The controlling parameters for the UAV assets are stored in the conf/asset.txt file, and

are enumerated below:

• assetSpeed=3.0 (positive float) - maximum speed of an asset.

• targetRadius=5 (positive integer) - radius of the ground-level target sensor footprint.

• targetSensorType=circle (string) - shape of the ground-level target sensor foot-

print; possible values are circle and square.

• targetSensorIncludeBounds=0 (integers 0 or 1) - Boolean flag which controls the

distance comparison operator used during target detection; when the parameter value

is 0, operator < is used, otherwise ≤ comparison is employed.

• foliageRadius=20 (positive integer) - radius of the ground-level foliage sensor foot-

print (always treated as a circle).

• detectionProb=1.0 (float between 0 and 1) - probability of successfully detecting a

target when it is within the sensor range.

• assetSeed=-1 (integer) - random number generator seed for stochastic components

of asset behavior; if the value is negative, then the current system time in seconds will

be used.

Initial asset positions are selected randomly from either a uniform or a normal distribution,

depending on the asset controller. Most of the time, an asset will move with the speed given
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by the value of the assetSpeed parameter, unless interactions with the neighboring assets

cause the UAV to slow down.

14.5.3 Forest Parameters

The foliage production procedure uses the values of the following parameters, which are

located in the conf/forest.txt configuration file:

• growthStrategy=env.NaturalPineCones (string) - fully-qualified Java class name

for the tree placement strategy; currently, the only choice is env.NaturalPineCones.

• seedRadius=8 (positive integer) - maximum distance that a seed can fall away from

its parent tree.

• seedStrength=0.2 (float between 0 and 1) - probability that a seed will grow into a

tree (i.e., seed viability).

• seedDecay=0.9 (positive float) - seed viability decay rate.

• forestSize=10 (positive integer) - initial size of the forest (i.e., the number of starter

trees, randomly distributed over the surveillance area).

• forestCoverage=0.2 (float between 0 and 1) - desired amount of foliage, expressed

as the fraction of the total area of the simulated world.

• forestSeed=-1 (integer) - random number generator seed for the forest algorithm;

system time will be used as the seed when this value is negative.

The first step of the forest generation process selects forestSize initial locations randomly,

in order to plant the first parent trees. During the next step, the parent trees will produce

seeds within the circle of seedRadius, and each seed will have a seedStrength probability

of growing into a new tree. Note that if multiple nearby parent trees deposit seeds in the

same location, then the probability that a new tree will appear at that location increases in

direct proportion to the number of seeds planted there. Since not all of the planted seeds

will become trees during the first iteration, the seeds that failed to produce a new tree will

lose some of their vitality, with the rate of seed viability decline given by the value of the
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Figure 14.9: Expanded view of the Surve application menubar.

seedDecay parameter. The seeding algorithm continues until at least forestCoverage of

the entire surveillance area is occupied by trees, thus it may be possible for the final foliage

cover to exceed the specified threshold by a small amount.

14.6 User Interface

This section provides an overview of the Surve graphical user interface (GUI). Whenever

possible, the design strives for simplicity and intuitive user experience, so many of the

options and buttons should be self-explanatory. Because of the desire to keep the interface

simple, only a subset of the simulator parameters can be changed via the GUI; the rest of the

configuration should be performed through the configuration file interface (see Section 14.5

for more information).

14.6.1 Menubar

The main application menubar provides the means to quickly and easily change the most

important simulation parameters, and to perform large-scale changes to the surveillance

experiments, such as altering the asset control strategy, or building a new foliage map. A

composite image of the expanded view of the main Surve menus is shown in Fig. 14.9.

The simulator can also be operated via the the button and slider control panel, shown in

Fig. 14.13.

File Menu

The File menu contains frequently used simulation commands: start and stop will initiate or

terminate the simulation, the reset will terminate the current simulation and reposition the
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assets and the targets using the current system time as the random number generator seed.

The same functionality is also available through the three buttons in the control panel (see

Fig. 14.13). The menu items for changing asset and target controller strategies will bring

up a new window where the new controller type can be selected (see Fig. 14.10). All of the

default asset and target controllers that are distributed with the Surve simulator can be

activated by using these menus. Selection of a new controller will cause the corresponding

random number generator to be initialized with the current system time, and the position

of the agents will be reset. As the name suggests, the Exit menu item will terminate the

simulation and quit the Surve application.

Display Menu

The Display menu allows the user to toggle the on-screen marking of each asset with its

identification number, which is extremely helpful when tracking the trajectory of a specific

asset. The Take Screenshot item creates a JPEG image of the current Surve state, pausing

the simulation if necessary. Only the surveillance area, including the forest, assets, and

targets is saved in the image; the GUI elements and simulator controls are not captured

in the image (to obtain a complete screenshot of the entire Surve window use a capture

utility provided by the operating system). Clicking the Take Screenshot button will open a

“Save File” dialog box (see Fig. 14.11), where the file name for the new image should be

Figure 14.10: Selecting a new asset and target controller.



98

Figure 14.11: Saving a screenshot of the Surve simulation.

specified.

Episode Menu

The Episode menu provides a quick way to regenerate a forest, reposition targets, and to

re-initialize the UAV assets. The first menu action Reset Assets will set the new asset

positions using the current system time as the seed for the random number generator.

Executing this action will relocate the assets, but will leave the targets in their current

positions. However, the count of targets detected by the assets will be set to zero, since

resetting the assets creates a completely new set of surveillance agents. Use the Reset Targets

menu item for restarting the targets, which again will use the current system time as the

random seed, and will place the new targets using this new random number sequence. The

old UAV asset locations will not be affected, but since a completely new target group is

created as the result of executing this action, the count of targets previously detected will

again be set to zero. The last function in this menu, Reset Forest, will change the forest

map by obtaining the new random number generator seed from the current system time,

and will regrow the forest with the same area coverage as before, but now with different

locations of the starter trees. While both the assets and the targets will keep their current
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Figure 14.12: Loading GA evolution history file.

positions after the change in the foliage map, all of the counters (including detected targets

and simulation time) will be reset to zero.

GA Menu

The GAmenu can only be used when the GAmodule execution history output file is available

(see Section 14.4 for a detailed explanation of the Surve evolutionary algorithm feature).

The purpose of this menu is to allow for a run-time visualization of the asset surveillance

behavior based on the force function parameters obtained with the genetic algorithm. In

order to visualize a given parameter set, you need to know the generation and the individual

identification number of the GA individual you wish to instantiate. Once these are known,

choose the Load GA History menu item, which will display the “Open File” window similar

to the one shown in Fig. 14.12, where you should select the correct history file, and then

click the Open button to load all of the parameter sets into the application. Then, activate

the GA menu again, and this time select the Load GA Individual option, which will display

the entry dialog (see Fig. 14.8) where you will input the generation and individual ID tags

for the specific parameter set you wish to load. When you click the OK button, the asset

controller parameters will be extracted from the GA history file and activated, which will

reset the asset positions and update the asset control slider panel. Note: before loading
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Figure 14.13: Surve control panel.

the GA history output file, you must make sure that the current asset controller is of the

same type as the asset controller used to generate the GA history file; in other words,

if you load the LJhistory.txt file, then make sure that the current asset controller is

set to assetcontrol.LJ. For greater convenience, you may select the Load GA Individual

option multiple times with different generation and individual ID tags without restarting

the simulator, but keep in mind that the current target locations and the forest map are

preserved when you load a new set of asset control parameters. If you wish to change

the target or foliage placement, please use the appropriate item from the Episode menu.

Also, if you mistakingly activate the Load GA Individual item before loading a history file,

then Surve will first prompt you for the history file, and then will allow you to select an

individual from that file.

14.6.2 Simulation Control Panel

The main Surve control panel is shown in Fig. 14.13. The four buttons on the left hand

side of the panel are available for user convenience, and are identical in functionality to the

corresponding File and Display menu items. The panel also contains an information area

where the current asset controller and the target display legend are shown. Note that the
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target display symbol legend, located to the right of the simulation control buttons, is useful

in identifying the four different surveillance classifications that each target may have, which

are:

1. visible, but not detected (downward triangle symbol)

2. detected (plus sign symbol)

3. undetected target obscured by foliage (multiplication symbol)

4. detected target obscured by foliage (vertical pipe symbol)

Below the legend, you will find the information about the current simulation, which includes

simulation time step, the number of detected targets, and the number of targets that have

been visible at least once up to this time step. For stationary targets, the visible counter

will not change as the simulation runs, but for moving targets this number will normally

increase as the simulation progresses, since more and more targets will be moving through

the open surveillance areas.

Underneath the simulator statistics are two disabled sliders for the number of assets and

targets. These numbers cannot be changed while the simulator is running, and should only

be set in the conf/general.txt file as the values of the agents and targets parameters.

The zoom control bar allows for magnification of the surveillance display region, however,

the display region will always use as much screen space as possible, thus it may be necessary

to resize the Surve window in order to shrink the display in some cases. The control

panel also includes the slider for adjusting the sleep time, which affects the delay between

the consecutive screen updates, and increasing this delay will be helpful when tracing the

trajectory of individual assets or targets.

14.6.3 Asset Controller Panel

When you replace the asset controller strategy via the File menu, you will notice that

the slider control panel in the lower right of the Surve application window changes (see

Fig. 14.14). This happens because each controller has a different set of parameters that may

be modified during the run of the simulation, and some controllers may have no parameters,

resulting in an empty GUI panel.
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Asset controllers based on physical interactions between neighboring assets and the

environment provide the most flexible and powerful control interface, through which the

user can alter the strength and type of asset-to-asset and asset-to-environment forces. The

two parameter sliders available in the control panel, which do not appear in the canonical

AP and LJ force equations, are the Fmax and the friction controls. Parameter Fmax limits

the force resulting from assets moving too close to each other or the surveillance perimeter.

The friction parameter determines how much of the assets’ kinetic energy is dissipated

during one simulation time step.

14.7 Batch Mode Experiments

One extremely powerful feature of the Surve toolkit is the ability to run a large number

of surveillance experiments in the non-interactive batch mode. Instead of displaying the

graphic user interface and rendering every detail for each simulation time step, the batch

mode simply executes the simulation with visualization disabled, and writes the perfor-

mance statistics to an output file for later processing and analysis. Because this mode of

surveillance experimentation requires a great deal of customization of system parameters,

the default Surve distribution includes a sample batch mode class file called IEEETester

which illustrates how you can create new experiments to better fit your investigation.

Figure 14.14: Surve asset controller adjustment panels.
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14.7.1 IEEE Tester (batch mode)

The IEEETester class file will execute a number of Surve simulations for a given foliage

cover, number of UAV assets, and target detection probability, overriding the correspond-

ing parameters from the configuration files. Its purpose is to evaluate the robustness of

a surveillance strategy by repeatedly executing it for a combination of different foliage

maps and initial target positions. The format of the text output file follows the MAT-

LAB M-script conventions, with the surveillance simulation results stored as 3 row vectors

of floating point numbers, which correspond to the percentage of visible targets found

by SL, SLAF, and LJ asset controller strategies. You can change the number of foliage

maps generated in each run by modifying the initialization value of the forestRuns vari-

able in the experiments/IEEETester.java source file. Likewise, the number of different

target starting positions (per forest map) is controlled via the testRuns variable in that

source file. After making changes to the source code, remember to compile the file with

javac experiments/IEEETester.java. If working on a UNIX-like operating system, the

Makefile included in the Surve source distribution can be used to quickly rebuild the

application.




